| 118 | 0 | 95 |
| 下载次数 | 被引频次 | 阅读次数 |
Ti_3C_2Tx MXene作为一种新型的二维层状材料,具有优异的力学、电学、电化学、光热转化和生物相容性等特征,被认为是构筑高性能纤维的一种极具前景的材料。然而,在MXene纤维组装过程中,Ti_3C_2Tx纳米片的自堆叠效应、层间结构缺陷以及界面作用力弱等问题导致MXene纤维的力学性能、电学性能和电化学性能远低Ti_3C_2Tx纳米片的本征性能。围绕这些问题,详细介绍了MXene纤维的制备方法及纤维微纳结构的设计原理,同时讨论了MXene纤维力学性能、电学性能和电化学性能的提升策略,总结了高性能MXene纤维存在的挑战,并展望了未来发展方向:通过进一步优化电极材料设计、制备工艺及其功能集成,MXene纤维有望在下一代高性能可穿戴设备和先进功能材料中发挥重要作用。
Abstract:Ti_3C_2Tx MXene, as a novel two-dimensional layered material, is considered a promising building block for fiber fabrication due to the outstanding mechanical, electrical, electrochemical, photothermal conversion, and biocompatibility properties. However, the mechanical, electrical, and electrochemical performances of MXene fibers are far lower than intrinsic properties of Ti_3C_2Tx nanosheets because of the self-stacking during the assembling process, interlayer structural defects, and weak interfacial interactions of Ti_3C_2Tx nanosheets. In view of the above-mentioned existing problems, this review elaborates on the spinning of MXene fibers and their microstructure design. Meanwhile, the strategies for improving the mechanical, electrical and electrochemical properties of MXene fibers are discussed, the existing challenges of MXene fibers are summarized, and the upcoming trends in MXene fibers are prospected. By further optimizing the design of electrode materials, preparation processes,and their functional integration, MXene fibers are expected to play an important role in next-generation highperformance wearable devices and advanced functional materials.
[1] ZOU J, WU J, WANG Y Z, et al. Additive-mediated intercalation and surface modification of MXenes[J]. Chemical Society Reviews, 2022, 51(8):2972-2990.
[2] YANG J, LI M Z, FANG S L, et al. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage[J]. Science, 2024, 383(6684):771-777.
[3] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides(MXenes)[J]. Science, 2021, 372(6547):eabf1581.
[4] HUSSAIN I, HANAN A, BIBI F, et al. Non-Ti(M2X and M3-X2)MXenes for energy storage/conversion[J]. Advanced Energy Materials, 2024, 14(34):2401650.
[5] LIM K R G, SHEKHIREV M, WYATT B C, et al. Fundamentals of MXene synthesis[J]. Nature Synthesis, 2022, 1(8):601-614.
[6] YU C Y, GONG Y J, CHEN R Y, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J].Small, 2018, 14(29):1801203.
[7] XIA Z M, DAI H H, CHANG J, et al. Rheology engineering for dry-spinning robust N-doped MXene sediment fibers toward efficient charge storage[J]. Small, 2023, 19(48):2304687.
[8] WANG H F, WANG Y R, CHANG J, et al. Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing[J]. Nano Letters, 2023, 23(12):5663-5672.
[9] ZHOU X H, WANG Z, XIONG T, et al. Fiber crossbars:An emerging architecture of smart electronic textiles[J]. Advanced Materials, 2023, 35(51):2370364.
[10] QUAN J X, JIANG X P, DING T, et al. Recent progress in MXene fiber:Materials, fabrication techniques, and potential applications[J]. Chemical Engineering Journal, 2025, 503:158320.
[11] AHMED A, HOSSAIN M M, ADAK B, et al. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications[J]. Chemistry of Materials, 2020,32(24):10296-10320.
[12] QIN S, USMAN K A S, HEGH D, et al. Development and applications of MXene-based functional fibers[J]. ACS Applied Materials&Interfaces, 2021, 13(31):36655-36669.
[13] HE J Q, LU C H, JIANG H B, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature,2021, 597(7874):57-63.
[14] LEVITT A, ZHANG J Z, DION G, et al. MXene-based fibers,yarns, and fabrics for wearable energy storage devices[J]. Advanced Functional Materials, 2020, 30(47):2000739.
[15] HU M M, LI Z J, LI G X, et al. All-solid-state flexible fiberbased MXene supercapacitors[J]. Advanced Materials Technologies, 2017, 2(10):1700143.
[16] UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J].Advanced Functional Materials, 2019, 29(45):1905015.
[17] COIA P, DHARMASIRI B, HAYNE D J, et al. Utilization of Ti3C2TxMXenes on carbonyl functionalized carbon fiber electrodes[J]. Chemical Engineering Journal, 2025, 507:160502.
[18] ZHENG Y C, WANG Y L, ZHAO J P, et al. Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage[J]. ACS Nano, 2023, 17(3):2487-2496.
[19] ZHOU T Z, YU Y Z, HE B, et al. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses[J]. Nature Communications, 2022, 13:4564.
[20] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Advanced Materials, 2011, 23(37):4248-4253.
[21] ZHANG J Z, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 2020,6(2):254-265.
[22] EOM W, SHIN H, AMBADE R B, et al. Large-scale wetspinning of highly electroconductive MXene fibers[J]. Nature Communications, 2020, 11:2825.
[23] LI S, FAN Z D, WU G Q, et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation[J]. ACS Nano, 2021, 15(4):7821-7832.
[24] SHIN H, EOM W, LEE K H, et al. Highly electroconductive and mechanically strong Ti3C2TxMXene fibers using a deformable MXene gel[J]. ACS Nano, 2021, 15(2):3320-3329.
[25] ZHANG J Z, SEYEDIN S, QIN S, et al. Highly conductive Ti3C2TxMXene hybrid fibers for flexible and elastic fibershaped supercapacitors[J]. Small, 2019, 15(8):1804732.
[26] JIANG X P, DING T, QUAN J X, et al. Confined hydrothermal assembly of hierarchical porous MXene/RGO composite fibers with enhanced oxidation resistance for high-performance wearable supercapacitors[J]. Small, 2025, 21(14):2412378.
[27] USMAN K A S, ZHANG J Z, QIN S, et al. Inducing liquid crystallinity in dilute MXene dispersions for facile processing of multifunctional fibers[J]. Journal of Materials Chemistry A,2022, 10(9):4770-4781.
[28] LIU Q, ZHAO A R, HE X X, et al. Full-temperature all-solid-state Ti3C2Tx/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility[J]. Advanced Functional Materials, 2021, 31(22):2010944.
[29] FU J S, LI Y C, ZHOU T Z, et al. Large stroke radially oriented MXene composite fiber tensile artificial muscles[J]. Science Advances, 2025, 11(2):eadt1560.
[30] DAI H H, CHANG J, YANG J, et al. Bio-inspired interfacial engineering of MXene fibers toward synergistic improvement in mechanical strength and electrochemical performance[J]. Advanced Functional Materials, 2024, 34(11):2312654.
[31] PAN L M, WANG H F, ZHOU J B, et al. Spinning dope modulation via pH-triggered multiscale sheet-wire linkages for constructing strong Ti3C2TxMXene fibers with high volumetric capacitance[J]. Advanced Functional Materials, 2025, n/a(n/a):2505247.
[32] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides(MXenes)for energy storage[J]. Nature Reviews Materials, 2017, 2:16098.
[33] LI Y Z, ZHANG X T. Electrically conductive, optically responsive, and highly orientated Ti3C2TxMXene aerogel fibers[J].Advanced Functional Materials, 2022, 32(4):2107767.
[34] ZHOU T Z, CAO C, YUAN S X, et al. Interlocking-governed ultra-strong and highly conductive MXene fibers through fluidics-assisted thermal drawing[J]. Advanced Materials, 2023,35(51):2305807.
[35] SCHULTZ T, FREY N C, HANTANASIRISAKUL K, et al.Surface termination dependent work function and electronic properties of Ti3C2TxMXene[J]. Chemistry of Materials, 2019,31(17):6590-6597.
[36] WANG H F, ZHAO W D, ZHANG Z T, et al. Synergizing electron and ion transports of Ti3C2TxMXene fiber via dotsheet heterostructure and covalent Ti─C─Ti cross-linking for efficient charge storage and thermal management[J]. Advanced Functional Materials, 2024, 34(48):2408508.
[37] LIU N, LI Q Q, WAN H J, et al. High-temperature stability in air of Ti3C2TxMXene-based composite with extracted bentonite[J]. Nature Communications, 2022, 13:5551.
[38] WANG H F, ZHAO W D, GUO Y, et al. Interlayer manipulation for accelerating ion diffusion kinetics in Ti3C2TxMXene fiber toward enhanced supercapacitance with high rate capability[J]. Nano Letters, 2025, 25(16):6405-6413.
[39] YIN X D, ZHENG W, TANG H F, et al. Unraveling cation intercalation mechanism in MXene for enhanced supercapacitor performance[J]. Energy Storage Materials, 2024, 72:103688.
[40] TANG Q Q, ZHANG Y, ZHU X L, et al. Hierarchically porous and hetero-structured black phosphorus/Ti3C2TxMXene aerogel fiber for wearable supercapacitors with implantable capability[J]. Advanced Functional Materials, 2024, 34(51):2410005.
[41] SHIMADA T, TAKENAKA N, ANDO Y, et al. Relationship between electric double-layer structure of MXene electrode and its surface functional groups[J]. Chemistry of Materials,2022, 34(5):2069-2075.
[42] ZHOU J B, DAI H H, WANG H F, et al. Biomimetic interfacial manipulation in Ti3C2Txfibers toward strengthened interlayer cross-linking, regulated ion diffusion and suppressed self-discharge[J]. Small, 2025, 21(25):2502658.
[43] ZHU X L, ZHANG Y, MAN Z M, et al. Microfluidic-assembled covalent organic Frameworks@Ti3C2TxMXene vertical fibers for high-performance electrochemical supercapacitors[J].Advanced Materials, 2023, 35(46):2307186.
基本信息:
DOI:
中图分类号:TQ342.94
引用信息:
[1]王慧芳,孙庚志,黄维.高性能MXene复合纤维研究进展[J].天津工业大学学报,2025,44(03):1-11.
基金信息:
国家自然科学基金面上项目(22375092)